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Received 29 August 1995

Abstract. An exact analytical solution is obtained for coupled time-independent Schrödinger
equations with model potentials:V11(x) = V1 + βV0 e−αx , V22(x) = V2 + 1

β
V0 e−αx and

V12(x) = V21(x) = V0 e−αx . This is made possible by solving a single fourth-order ordinary
differential equation derived from the original coupled equations. Exact closed-form solutions
for the non-adiabatic transition matrices (or scattering matrices) are found for scattering boundary
conditions with three, two and one open channels, respectively. How to apply the present results
to deal with general potentials is also briefly analysed.

1. Introduction

Coupled time-independent Schrödinger equations

h̄2

2m

d2ψ1

dx2
+ [E − V11(x)]ψ1(x) = V12(x)ψ2(x) (1.1a)

and

h̄2

2m

d2ψ2

dx2
+ [E − V22(x)]ψ2(x) = V21(x)ψ1(x) (1.1b)

for −∞ < x < ∞, construct a starting point of analytical treatment for non-adiabatic
collisions in atomic and molecular physics. Since exact analytical solutions in closed form
for the coupled equations are not generally possible, exactly solvable model problems play
a very important role for developing various approximation methods. The present work is
an illustration toward this aim with the following two diabatic potentials and coupling:

V11(x) = V1 + βV0 e−αx V22(x) = V2 + 1

β
V0 e−αx (1.2)

and

V12(x) = V21(x) = V0 e−αx (1.3)

whereα, β andV0 are assumed to be positive withV2 > V1. A central task in the present
paper is to find exact analytical solutions of non-adiabatic transition matrices (or scattering
matrices) for three cases:

(i) Three open channels forE > V2,
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1294 Chaoyuan Zhu

(ii) Two open channels forV2 > E > V3,
(iii) One open channel forV3 > E > V1,

where three energy thresholdsV1, V2 andV3 (see equation (2.8)) are shown in figure 1. Two
diabatic potentials are crossing, parallel, and non-crossing and non-parallel respectively for
β > 1, β = 1 andβ < 1. These three situations correspond to quite different types of
non-adiabatic transitions in the diabatic representation. In contrast, their counterparts of
the two adiabatic potentials show very smooth dependence onβ because of exponentially
divergent coupling in equation (1.3). Figure 1 shows the two adiabatic potentials forβ = 1
with two tendencies thatV3 approachesV2 for β → ∞ andV3 approachesV1 for β → 0.

Figure 1. Two adiabatic potentialsW+(x) andW−(x) with β = 1 in (1.2).

Two categories might be classified for finding an exact analytical solution of the ordinary
differential equation. The first is that an exact analytical solution can be obtained for the
whole region of the variable (sayx here) through various transformations. For example,
Osherov and Voronin [1] illustrated a fascinating example in which the compact solution
has been obtained for equations (1.1) in the case where two diabatic potentials (V11(x) and
V22(x)) are constants with the same type of coupling term as in (1.3). The present work is
actually stimulated from their work. A significant importance of the present model potentials
is that three cases of crossing, parallel, non-crossing and non-parallel are considered as
a whole, it provides an opportunity for establishing the unified semiclassical approach
to the non-adiabatic collisions of atomic and molecular physics. The model potentials
introduced by Osherov and Voronin [1] correspond to the parallel case only. Moreover, the
lower adiabatic potentialW−(x) (see figure 1) is now convergent asx approaches negative
infinity, while it is divergent negatively in [1]. This means that the arbitrariness of the phase
encountered in [1] can be removed in the present model for the semiclassical applications.
The second is that an exact analytical solution is not possible for the whole region of the
variable, but is possible for the asymptotic region through various transformations. Then,
physical quantities such as eigenvalues, scattering matrices and so on can still be solved in
an exact analytical form, providing that the connection problem of the asymptotic solution
is known. The Stokes phenomenon [2] of asymptotic solution of the ordinary differential
equation provides a powerful tool to deal with these kinds of problems [3–5]. Generalizing
the real variable to the complex variable and tracing the asymptotic solution around the
complex plane, the connection matrix which connects the asymptotic solution in the complex
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plane can be expressed in terms of Stokes constants. In a remarkable recent work Zhu and
Nakamura [5] found an exact analytical solution of the Stokes constants for the second-order
ordinary differential equation with the coefficient function as the fourth-order polynomial.
In this way, exact analytical solutions of scattering matrices were obtained for the two-
state linear curve crossing problems [6] (V11(x) andV22(x) in equations (1.2) are linearly
dependent on the variablex with constant couplingV12(x) in equation (1.3)). The two ways
mentioned above are complementary to deal with the differential equation analytically.

An exact analytical solution for a differential equation is very important not only in
a mathematical aspect, but also in setting up an excellent foundation for a semiclassical
approximation [7]. For instance, theWKB elastic phase shift for the scattering problem on a
single potential is analytically formulated by the exact connection based on the Airy function
with a one-turning-point problem. The well known Bohr–Sommerfeld quantization formula
for a potential well and the tunnelling formula for a potential barrier can be produced by the
exact connection based on the Weber function with a two-turning-point problem. Moreover,
semiclassical solutions of the scattering matrices for the two-state curve crossing problems
have been found from the exact connection based on the four-transition-point problem [8, 9].
An underlying idea in semiclassical theory is that exact analytical solutions first based on
certain model potentials can be generalized to a wide class of real potentials which share
the same essential features as the model potentials. Even for a numerical computational
program, it is very obvious that an exact analytical solution can provide the most reliable
and accurate check.

Section 2 reduces coupled equations (1.1) to a single fourth-order ordinary differential
equation and its solution is related to a certain special function called theG-function [10].
Four independent solutions are given. Section 3 presents exact analytical solutions for non-
adiabatic transition matrices for the three cases mentioned above. The conclusion is given
in section 4.

2. Exact solution in terms of theG-function

Following the notation used by Osherov and Voronin [1], we introduce a new variable

ρ =
√

8mV0

h̄α
e− 1

2αx (2.1)

with dimensionless wave numbers

qi =
√

2m

h̄α

√
E − Vi i = 1, 2 . (2.2)

Then, the coupled equations (1.1) turn out to be of the form(
ρ2 d2

dρ2
+ ρ

d

dρ
+ 4q2

1 − βρ2

)
ψ1(ρ) = ρ2ψ2(ρ) (2.3a)

and (
ρ2 d2

dρ2
+ ρ

d

dρ
+ 4q2

2 − 1

β
ρ2

)
ψ2(ρ) = ρ2ψ1(ρ). (2.3b)
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Making the further substitutionz = (β+ 1/β)ρ2/4 and eliminatingψ2 in (2.3a), we obtain
a single fourth-order differential equation forψ1,

[ 4∏
i=1

(
z

d

dz
− bi

)
− z

2∏
i=1

(
z

d

dz
− ai + 1

)]
ψ1(z) = 0 (2.4)

with a relation forψ2,[(
z

d

dz
− b1

)(
z

d

dz
− b2

)
− β

β + 1/β
z

]
ψ1(z) = z

β + 1/β
ψ2(z) (2.5)

where

b1 = iq1 b2 = −iq1 b3 = 1 + iq2 b4 = 1 − iq2

a1 = 1 + iγ and a2 = 1 − iγ
(2.6)

with

γ =
√
βq2

2 + q2
1/β

β + 1/β
≡

√
2m

h̄α

√
E − V3 (2.7)

and

V3 = βV2 + V1/β

β + 1/β
. (2.8)

The general solution of (2.4) can be related to a linear combination of four independent
Meijer functions (denoted as theG-function) [11],

ψ1(z) = c1G
40
24

(
z|a1a2
b1b2b3b4

)+c2G
40
24

(
zei2π |a1a2

b1b2b3b4

)+c3G
41
24

(
zeiπ |a1a2

b1b2b3b4

)+c4G
41
24

(
zeiπ |a2a1

b1b2b3b4

)
(2.9)

where ci(i = 1–4) are arbitrary constants,bi(i = 1 ∼ 4) and aj (j = 1, 2) are defined
in (2.6). This solution has an irregular singularity only atz = ∞. In order to find a non-
adiabatic transition matrix we must investigate the asymptotic connection of theG-function
between the ranges ofz → 0 (corresponding tox → ∞) and z → ∞ (corresponding to
x → −∞). Explicit asymptotic expressions for theG-function in (2.9) can be found as
follows [12]:

G40
24

(
z|a1a2
b1b2b3b4

) =
√
π

z1/4
e−2

√
z (2.10a)

G40
24

(
z ei2π |a1a2

b1b2b3b4

) =
√
π

iz1/4
e2

√
z (2.10b)

G41
24

(
z eiπ |a1a2

b1b2b3b4

) = (z eiπ )a1−1A(a1, a2) (2.10c)

and

G41
24

(
z eiπ |a2a1

b1b2b3b4

) = (z eiπ )a2−1A(a2, a1) (2.10d)
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for z → ∞, where

A(a1, a2) = 0(1 + b1 − a1)0(1 + b2 − a1)0(1 + b3 − a1)0(1 + b4 − a1)

0(1 + a2 − a1)
. (2.11)

For z → 0, we have

G40
24

(
z|a1a2
b1b2b3b4

) = B(b1, b2)z
b1(1+νz)+B(b2, b1)z

b2(1+ν∗z)+D(b3, b4)z
b3 +D(b4, b3)z

b4

(2.12a)

G40
24

(
z ei2π |a1a2

b1b2b3b4

) = B(b1, b2) ei2πb1zb1(1 + νz)+ B(b2, b1) ei2πb2zb2(1 + ν∗z)

+D(b3, b4) ei2πb3zb3 +D(b4, b3)e
i2πb4zb4 (2.12b)

G41
24

(
z eiπ |a1a2

b1b2b3b4

) = πB(b1, b2)

sinπ(a1 − b1)
eiπb1zb1(1 + νz)+ πB(b2, b1)

sinπ(a1 − b2)
eiπb2zb2(1 + ν∗z)

+ πD(b3, b4)

sinπ(a1 − b3)
eiπb3zb3 + πD(b4, b3)

sinπ(a1 − b4)
eiπb4zb4 (2.12c)

and

G41
24

(
z eiπ |a2a1

b1b2b3b4

) = πB(b1, b2)

sinπ(a2 − b1)
eiπb1zb1(1 + νz)+ πB(b2, b1)

sinπ(a2 − b2)
eiπb2zb2(1 + ν∗z)

+ πD(b3, b4)

sinπ(a2 − b3)
eiπb3zb3 + πD(b4, b3)

sinπ(a2 − b4)
eiπb4zb4 (2.12d)

whereν = β/[(β + 1/β)(1 + i2q1)] with

B(b1, b2) = 0(b2 − b1)0(b3 − b1)0(b4 − b1)

0(a1 − b1)0(a2 − b1)
(2.13)

and

D(b3, b4) = 0(b1 − b3)0(b2 − b3)0(b4 − b3)

0(a1 − b3)0(a2 − b3)
(2.14)

where0( ) means the gamma function. It should be noted that the first two terms in (2.12)
are expanded up to the first order while the last two terms are only required to the zeroth
order. Now, by setting upc2 = 0 in (2.9) we can eliminate the unphysical solution (2.10b)
which is exponentially divergent atz → ∞. Inserting equations (2.10) and (2.12) into (2.9)
and (2.5) with carefully algebraic calculation, we finally obtain the asymptotic solutions for
ψ1(x) andψ2(x),

ψ1(x) = c3µ
iγA(a1, a2) e−πγ exp(−iαγ x)+ c4µ

−iγA(a2, a1) eπγ exp(iαγ x)

for x → −∞ (2.15a)

and

ψ2(x) = −βψ1(x) for x → −∞ (2.15b)
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with

ψ1(x) = B(b1, b2)µ
iq1

[
c1 + c3

π eiπb1

sinπ(a1 − b1)
+ c4

π eiπb1

sinπ(a2 − b1)

]
exp(−iαq1x)

+ B(b2, b1)µ
−iq1

[
c1 + c3

π eiπb2

sinπ(a1 − b2)
+ c4

π eiπb2

sinπ(a2 − b2)

]
exp(iαq1x)

for x → ∞ (2.16a)

and

ψ2(x) = D(b3, b4)µ
iq2(β + 1/β)(b3 − b1)(b3 − b2)

×
[
c1 + c3

π eiπb3

sinπ(a1 − b3)
+ c4

π eiπb3

sinπ(a2 − b3)

]
exp(−iαq2x)

+D(b4, b3)µ
−iq2(β + 1/β)(b4 − b1)(b4 − b2)

×
[
c1 + c3

π eiπb4

sinπ(a1 − b4)
+ c4

π eiπb4

sinπ(a2 − b4)

]
exp(iαq2x) for x → ∞

(2.16b)

where

µ = 2mV0

h̄2α2
(β + 1/β) . (2.17)

Equations (2.15) and (2.16), which are interrelated byc1, c3 and c4, basically define the
connection of the asymptotic solution, and include all the information for finding the non-
adiabatic transition matrix in the next section.

3. Exact solutions of non-adiabatic transition matrices

In the previous section we have found exact asymptotic solutions for the wavefunctions
ψ1(x) andψ2(x) which are given in the diabatic representation. As is well known, the non-
adiabatic transition matrix (or scattering matrix) is defined in terms of the wavefunctions
in an adiabatic representation in which the correct physical boundary conditions can be
imposed. The transformation matrix between two representations can be found in the
literature (for example, [13]),(

91(x)

92(x)

)
=

(
cosθ(x) sinθ(x)

− sinθ(x) cosθ(x)

) (
ψ1(x)

ψ2(x)

)
(3.1)

where

θ(x) = 1

2
arctan

2V12(x)

V11(x)− V22(x)
. (3.2)

Whenx → ∞ the diabatic couplingV12 → 0, i.e. θ → 0. Thus, two representations are
identical,

91(x) = ψ1(x) for x → ∞ (3.3)



Coupled time-independent Schr¨odinger equations 1299

and

92(x) = ψ2(x) for x → ∞ (3.4)

whereψ1(x) andψ2(x) are given in (2.16). On the other hand, forx → −∞ we have
θ = 1

2 arctan 2
β−1/β . From equation (3.1) we can obtain the wavefunctions in an adiabatic

representation,

91(x) = 1√
1 + β2

[ψ1(x)− βψ2(x)] =
√

1 + β2ψ1(x) for x → −∞ (3.5)

and

92(x) = 1√
1 + β2

[βψ1(x)+ ψ2(x)] = 0 for x → −∞ (3.6)

whereψ1(x) andψ2(x) are given by (2.15). As is demonstrated in figure 1, there is one
closed channel which corresponds to (3.6) and one possible open channel (E > V3) which
corresponds to (3.5) in the asymptotic region ofx → −∞.

An alternative way to find asymptotic solutions of wavefunctions is directly based on
the two adiabatic potentials,

W±(x) =(V11(x)+ V22(x))/2 ±
√
(V11(x)− V22(x))2/4 + V 2

12(x)

=(V1 + V2)/2 + (β + 1/β)V0 e−αx/2

±
√
(V1 − V2 + (β − 1/β)V0 e−αx)2/4 + V 2

0 e−2αx (3.7)

with wavenumbers

Q±(x) =
√

2m

h̄

√
E −W±(x) (3.8)

which lead to the following asymptotic expressions:

lim
x→∞Q+(x) = αq2 lim

x→∞Q−(x) = αq1 and lim
x→−∞Q−(x) = αγ (3.9)

with which we can directly write down asymptotic expressions for the wavefunctions in the
adiabatic representation,

91(x) = 1√
αq1

(A1 eiαq1x + B1 e−iαq1x) for x → ∞ (3.10a)

92(x) = 1√
αq2

(A2 eiαq2x + B2 e−iαq2x) for x → ∞ (3.10b)

and

91(x) = 1√
αγ
(A3 e−iαγ x + B3 eiαγ x) for x → −∞ (3.10c)
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whereAi(i = 1, 2, 3) represents outgoing wave amplitude andBi(i = 1, 2, 3) represents
incoming wave amplitude if the corresponding channel is open. The non-adiabatic transition
matrix is simply defined by the connection between theAi and Bi . Their relations
with the three arbitrary constantsc1, c2 and c3 in the previous section can be found by
comparing (3.10) with (3.3)–(3.5) together with (2.15) and (2.16), forAi we simply write

1√
αq1

A1 = B(−q1)µ
−iq1

[
c1 + c3

π eiπb2

sinπ(a1 − b2)
+ c4

π eiπb2

sinπ(a2 − b2)

]
(3.11a)

1√
αq2

A2 = (β + 1/β)R(−q2)µ
−iq2

[
c1 + c3

π eiπb4

sinπ(a1 − b4)
+ c4

π eiπb4

sinπ(a2 − b4)

]
(3.11b)

and

1√
αγ
A3 =

√
β2 + 1c3 e−πγA(γ )µiγ . (3.11c)

For Bi we have

1√
αq1

B1 = B(q1)µ
iq1

[
c1 + c3

π eiπb1

sinπ(a1 − b1)
+ c4

π eiπb1

sinπ(a2 − b1)

]
(3.12a)

1√
αq2

B2 = (β + 1/β)R(q2)µ
iq2

[
c1 + c3

π eiπb3

sinπ(a1 − b3)
+ c4

π eiπb3

sinπ(a2 − b3)

]
(3.12b)

and

1√
αγ
B3 =

√
β2 + 1c4 eπγA(−γ )µ−iγ (3.12c)

whereA andB (see equations (2.11) and (2.13)) can be rewritten as

A(γ ) = 0[i(q1 − γ )]0[−i(q1 + γ )]0[1 + i(q2 − γ )]0[1 − i(q2 + γ )]

0[1 − i2γ ]
(3.13)

and

B(q1) = 0[−2 iq1]0[1 − i(q1 − q2)]0[1 − i(q1 + q2)]

0[1 + i(γ − q1)]0[1 − i(γ + q1)]
(3.14)

with R given by

R(q2) = 0[−2 iq2]0[i(q1 − q2)]0[−i(q1 + q2)]

0[i(γ − q2)]0[−i(γ + q2)]
. (3.15)
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3.1. Three-channel case (E > V2)

SinceE > V2, the three channels denoted as in (3.10) are open. The non-adiabatic transition
matrix is defined by the connection between the outgoing amplitudesAi(i = 1–3) and
incoming amplitudesBi(i = 1–3) as follows:

(A1

A2

A3

)
=

(N11 N12 N13

N21 N22 N23

N31 N32 N33

)(B1

B2

B3

)
. (3.16)

By eliminatingc1, c3 andc4 from (3.11) and (3.12), we can find

N11 = µ−2 iq1
B(−q1)

B(q1)

sinhπ(q1 − γ ) sinhπ(q1 + q2)

sinhπ(q1 + γ ) sinhπ(q1 − q2)

N12 = µ−iq1−iq2

β + 1/β

√
q1

q2

B(−q1)

R(q2)

sinhπ(γ − q2) sinh(2q1π)

sinhπ(q1 + γ ) sinhπ(q1 − q2)

N13 = iπµ−iq1+iγ√
1 + β2

√
q1

γ

B(−q1)

A(−γ )
sinh(2γπ) sinh(2q1π) sinhπ(q1 + q2)

sinh2π(q1 + γ ) sinhπ(γ + q2) sinhπ(q1 − γ )

N21 = N12 (3.17)

N22 = µ−2 iq2
R(−q2)

R(q2)

sinhπ(γ − q2) sinhπ(q1 + q2)

sinhπ(γ + q2) sinhπ(q1 − q2)

N23 = iπ
√

1 + 1/β2µ−iq2+iγ
√
q2

γ

R(−q2)

A(−γ )
sinh(2γπ) sinh(2q2π) sinhπ(q1 + q2)

sinh2π(q2 + γ ) sinhπ(γ + q1) sinhπ(q2 − γ )

N31 = N13

N32 = N23

N33 = µ2iγ A(γ )

A(−γ )
sinhπ(q1 − γ ) sinhπ(γ − q2)

sinhπ(q1 + γ ) sinhπ(γ + q2)

whereB(q1), R(q2) andA(γ ) are defined by (3.13)–(3.15). It is not difficult to prove that
the symmetrical matrixNij in (3.17) satisfies the unitarity condition as a requirement of the
scattering matrix.

3.2. Two-channel case (V2 > E > V3)

In this case, sinceq2
2 < 0 we can rewrite

q2 = i|q2| . (3.18)

Now,92 in (3.10b) becomes a closed channel which requires a physical boundary condition
as

B2 = 0 . (3.19)

From equation (3.12b) this leads to

c1 + c3
π eiπb3

sinπ(a1 − b3)
+ c4

π eiπb3

sinπ(a2 − b3)
= 0 (3.20)



1302 Chaoyuan Zhu

which indicates that there are only two arbitrary constants out of threec1, c3 and c4. The
non-adiabatic transition matrix is defined by two open channels,(

A1

A3

)
=

(
M11 M12

M21 M22

) (
B1

B3

)
. (3.21)

By using (3.11) and (3.12) with the constraint of (3.20), we can find

M11 = µ−2 iq1
B(−q1)

B(q1)

sinhπ(q1 − γ ) sinhπ(q1 + q2)

sinhπ(q1 + γ ) sinhπ(q1 − q2)

M12 = M21 = µiγ−iq1

π

√
β2 + 1

A(γ )

B(q1)

√
γ

q1

sinhπ(q1 − γ ) sinhπ(γ − q2)

sinhπ(q1 − q2)
(3.22)

M22 = µ2 iγ A(γ )

A(−γ )
sinhπ(q1 − γ ) sinhπ(γ − q2)

sinhπ(q1 + γ ) sinhπ(γ + q2)
.

Recall thatq2 = i|q2|. Again one can prove thatMij in equation (3.22) is a unitarity matrix.

3.3. One-channel case (V3 > E > V1)

In this case we have one more closed channel which is91 in (3.10c) because ofγ 2 < 0.
This requires a physical boundary condition as

B3 = 0 . (3.23)

From equation (3.12c) this leads to one more constraint

c4 = 0 . (3.24)

With the two constraints of (3.20) and (3.24), we define the non-adiabatic transition matrix
by only one open channel,

A1 = SB1 ≡ ei2ηB1 (3.25)

with

η = −q1 lnµ− argB(q1)− arctan[tan(|γ |π)/ tanh(q1π)] + arctan[tan(|q2|π)/ tanh(q1π)]

(3.26)

which can be regarded as the non-adiabatic scattering phase shift.

4. Conclusions

By employing a special function which is called theG-function, we have found exact
analytical solutions for coupled Schrödinger equations with the model potentials proposed
in (1.2) and (1.3). Exact closed-form solutions for the non-adiabatic transition matrices
provide an excellent foundation to investigate non-adiabatic transitions with general
potentials analytically. In order to demonstrate a wide class of applications to realistic
systems, we would like to take an example in the following. Since the lower adiabatic
potentialW−(x) approaches the energy thresholdV3 quickly in the negative direction of
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the coordinatex, we put a repulsive potential to replaceW−(x) up to a certain negative
point x0. Thus, in the regionx < x0 wave propagation along the lower adiabatic potential
can be assumed to decouple with the upper adiabatic potential; and a simple semiclassical
connection based on one turning point can be applied to this region. In the regionx > x0

the non-adiabatic transition can be described by the present results of the non-adiabatic
transition matrix. By using this kind of semiclassical analysis, the non-adiabatic transition
probability can be easily obtained as follows:

P12 = sinh(2q1π) sinh(2q2π) cos2 η

sinh2π(q1 − q2)

×
[

sinh2(2γπ) sinh2π(q1 + q2)

4 sinhπ(q1 − γ ) sinhπ(q1 + γ ) sinhπ(γ − q2) sinhπ(γ + q2)
− cos2 η

]−1

(4.1)

where

η = σ + argA(γ ) (4.2)

in which A(γ ) is given in (3.13) andσ can be interpreted as a difference of phase
integrals along two adiabatic potentials. Note that (3.17) are used for deriving (4.1). This
presents a very rigorous semiclassical result directly based on the coupled time-independent
Schr̈odinger equations. In contrast, a lot of sophisticated mathematical methods have been
developed in the literature which provide semiclassical approaches based on the coupled
time-dependent Schrödinger equations [14–16]. The relationship of time-independent and
time-dependent schemes has been clearly reviewed in a recent paper [17]. However, the
present result in (4.1) is very general and can provide a basis for further semiclassical
approaches to non-adiabatic scattering problems.

It is an essential feature of the present method that exact solutions of non-adiabatic
transition matrices first derived from model potentials can be applied to a wide class of
general potentials. This idea is not restricted in the coupled Schrödinger equations, i.e. the
two-state case; and it must be applicable even for the multi-state problem, in principle. To
establish semiclassical theory based on the present results will be a very interesting subject
and will be investigated in a future publication.
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